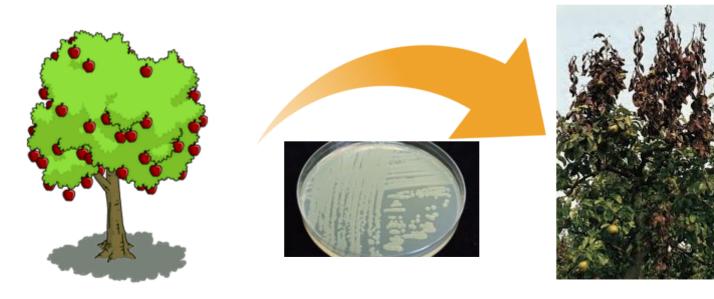
Caractérisation d'un nouveau bactériophage dirigé contre *Erwinia amylovora* dans une perspective de biocontrôle.

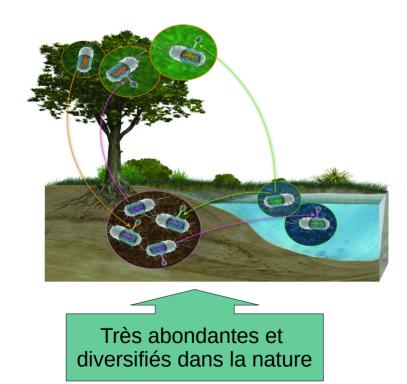
Master réalisé par : Romain Delattre


Encadré par : Clara Torres-Barceló

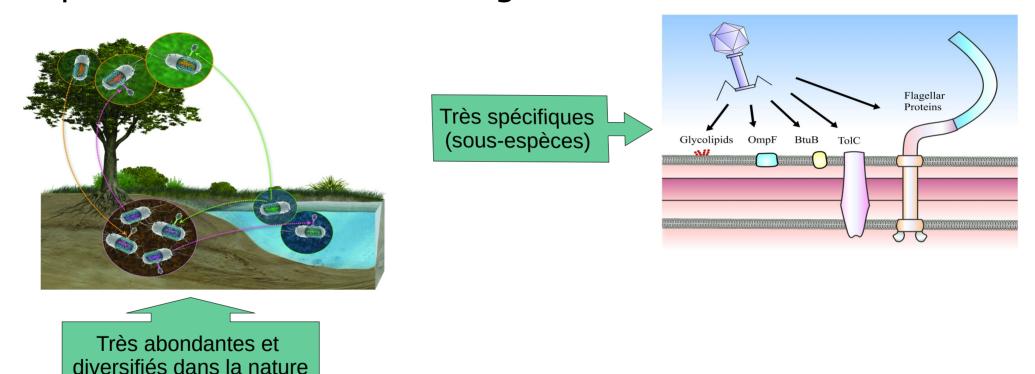
Rencontres du GIS Fruits - 28 octobre 2020

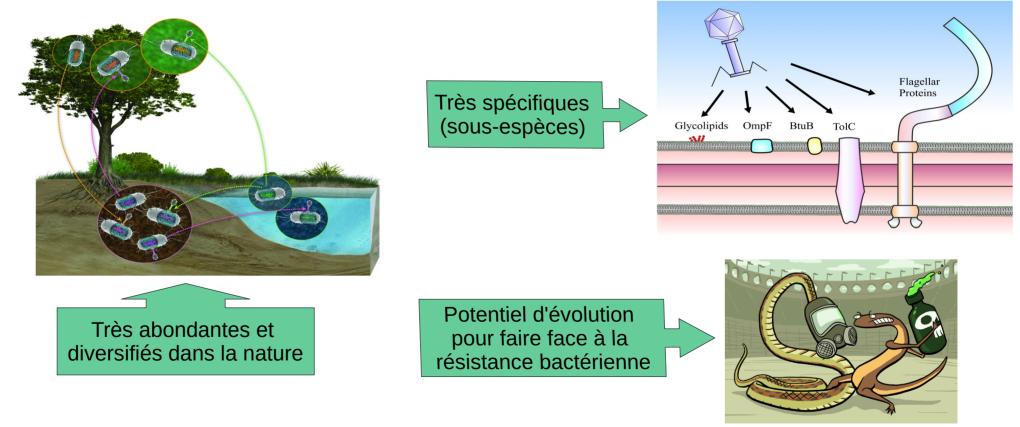
Le feu bactérien

- Le feu bactérien est une maladie causée par la bactérie *Erwinia amylovora* qui affecte les arbres fruitiers à pépins et arbustes d'ornement.
- En France, des épidémies de feu bactérien sont régulièrement constatées dans les grands bassins de production de pommes et poires : PACA, Occitanie, Nouvelle Aquitaine, AURA, Pays de la Loire. Maladie en constante progression depuis 2017 en France.

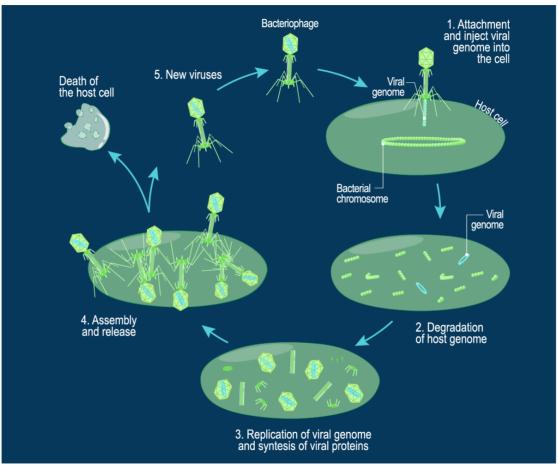

Le feu bactérien

- Les bactéries pénètrent dans les arbres fruitiers par les fleurs et les jeunes pousses
- Symptômes : nécroses, exsudats et dessèchements.
- Aujourd'hui, les variétés tolérantes et l'assainissement des vergers présentant des symptômes restent les seules stratégies de lutte de choix contre le feu bactérien.
- Le développement d'une stratégie innovante de contrôle efficace du feu bactérien, économiquement abordable et respectueuse avec l'environnement, est un défi prioritaire pour la production de fruits en France et dans le monde.

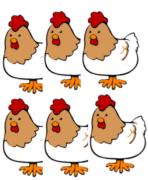



Les **phages** font partie du **microbiote** plante-sol-eau, d'importants moteurs de l'écologie et de l'évolution bactériennes...

Les **phages** font partie du **microbiote** plante-sol-eau, d'importants moteurs de l'écologie et de l'évolution bactériennes...

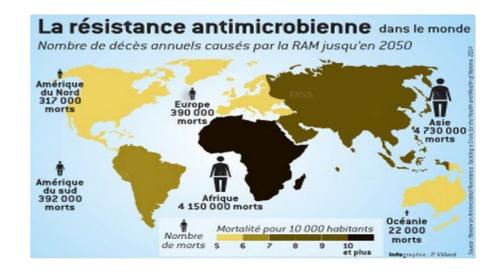

Les **phages** font partie du **microbiote** plante-sol-eau, d'importants moteurs de l'écologie et de l'évolution bactériennes...

... qui pourraient aider à contrôler les maladies des plantes.


Le cycle de vie des phages

CYCLE LYTIQUE → **Phages virulents**

La résistance aux antibiotiques : une crise mondiale



+ problèmes environnementales

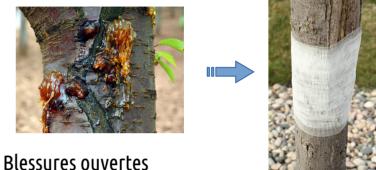
Des applications des phages en dehors de la médicine AUJOURD'HUI

VETERINAIRE

AGRICULTURE

INDUSTRIE DES ALIMENTS

Potentielles applications des phages dans l'agriculture


Traitement de l'eau d'irrigation (sous serre ou plein champ)

Stérilisation de tubercules ou semences

Injection de phages dans les vignes contre *Xylella fastidiosa* (Texas A&M AgriLife's Center for Phage Technology)

Produits de protection de plantes basés sur des bactériophages approuvés actuellement :

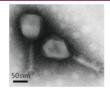
Registering authority	Product name/producer	Target diseases	Target species	Registration details			
EPA	Agriphage (Omnilytics Inc., USA)	Bacterial spot of tomatoes & peppers Bacterial speck of tomatoes	Xanthomonas campestris pv. vesicatoria & Pseudomonas syringae pv. tomato	67986-1 (December 2005, amended June 2006 & October 2011)			
EPA	Agriphage CMM (Omnilytics Inc., USA)	Bacterial canker of tomatoes	Clavibacter michiganensis sub sp. michiganensis	67986-6 (September 2011)			
PMRA Canada	Agriphage CMM (Omnilytics Inc., USA)	Bacterial canker of tomatoes	Clavibacter michiganensis sub sp. michiganensis	RD2012-21 (January 2012)			
EPA	AgriPhage-Citrus canker OmniLytics Inc.	<i>Xanthomonas citri</i> subsp. <i>citri</i>	Xanthomonas citri subsp. citri	67986-9 (September 2018)			
EPA	AgriPhage-Fire Blight OmniLytics Inc	Erwinia amylovora	Erwinia amylovora	67986-8 (February 2020)			
EPA	XylPhi-PD Otsuka Pharmaceutical Co., Ltd.	Xylella fastidiosa	Xylella fastidiosa	92918-1 (April 2019			

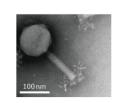
L'étude des **phages** d'Erwinia amylovora

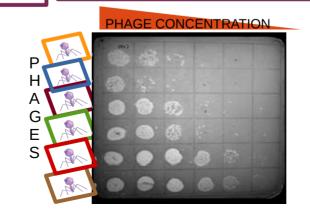
ÉCHANTILLONNAGE (région PACA)

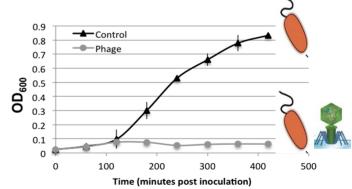
ISOLEMENT et PURIFICATION

ANALYSIS des GENOMES


MICROSCOPIE ELECTRONIQUE GAMME D'HÔTES


(36 souches, locales et internationales)


ÉFFICACITÉ (éffet inhibitoire)



Échantillonnages des phages d'Erwinia amylovora

- 1er échantillonnage : Hautes Alpes 2017 → 3 souches de la **bactérie**
- 2e échantillonnage : Vaucluse mars 2019 → 1 phage
- 3e échantillonnage : Vaucluse juin 2019 → 15 phages
- 4e échantillonnage : PACA juin 2020 → 100 échantillons

2019 ⇒ Résultats préliminaires

Romain Delattre (Master 2 Montpellier)

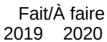
- Collection international de souches d'*E. amylovora*
- Isolement et séquençage de 3 souches d'*E. amylovora* françaises actuelles
- Première collection de 15 phages d'Erwinia en France (échantillonnés en juin 2019 Vaucluse)

Analyses des phages d'Erwinia amylovora

• 15 phages → gamme d'hôtes

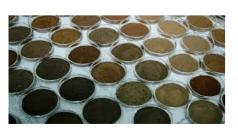
origin	souche Erwinia	ph1	ph2	ph3	ph4	ph5	ph6	ph7	ph9	ph10	ph11	ph12	ph13	ph14	ph15
France	Ea-1	0	7	7	0	0	0	0	6	0	8	7	6	8	8
France	Ea-3	6	7	9	0	8	6	6	6	6	7	6	6	8	6
France	Ea-4	6	9	7	7	6	6	6	6	6	7	6	6	6	6
USA	AFRS2	8	8	7	0	8	6	7	6	8	7	8	6	8	6
Germany	3056	0	8	7	0	8	6	7	6	0	8	7	6	7	8
USA	JL1185	6	7	7	7	8	6	6	6	7	7	7	6	8	6
UK	1252	6	9	8	8	7	6	6	7	6	6	7	7	6	6
UK	1232T	6	8	7	7	8	6	8	6	6	6	6	7	6	6
Spain	UPN527	6	9	7	7	9	6	6	7	6	6	7	7	6	6
USA	UTRJ2	6	7	7	0	0	0	0	6	8	7	7	6	8	7
France	7249	6	7	8	7	7	6	8	6	6	6	6	7	6	6
France	1430	7	7	8	7	7	6	6	6	6	6	6	7	6	6
France	1367	6	7	6	6	7	6	6	6	6	6	6	7	6	6
Lebanon	Leb B66	6	7	7	7	8	6	7	6	8	8	8	7	6	6
Lebanon	Leb A3	6	7	6	5	7	6	6	6	6	6	6	7	6	6
USA	3792	6	7	7	0	7	7	7	6	8	8	7	6	8	8
Italia	CFBP7284	7	9	8	7	9	6	6	6	6	6	6	6	6	6
USA	MO-E-101B	0	7	7	0	0	0	0	6	0	8	7	6	8	8

$2020 \Rightarrow$ Continuation du projet


- Échantillons de parcelles infectées du Vaucluse, des Bouches du Rhône et des Hautes Alpes (Juin 2020, coordonné par Myriam Berud, La Pugère)
- 23 parcelles x 5 échantillons = 115 échantillons de sol

Projet Phages contre le feu bactérien

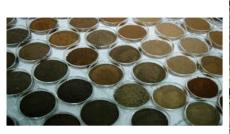
- Échantillonnage dans le milieu agricole
- Isolement et purification de phages d'Erwinia
- Caractérisation de la gamme d'hôtes des phages
- Microscopie électronique (morphologie)
- Analyse des génomes des phages
- Efficacité in vitro et in vivo

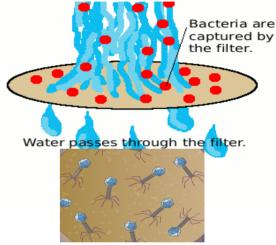


Continuation projet phages d'Erwinia amylovora...

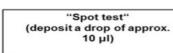
- Collaborations :
 - Université de Sfax (Tunisie)
 - La Pugère, Chambres d'agriculture, CITFL, GRAB,
 Fredon, APPP,...
- Financement?
- Développement produits commerciaux ?

Merci!

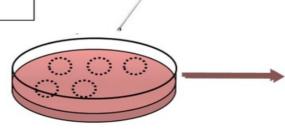

clara.torresbarcelo@inrae.fr



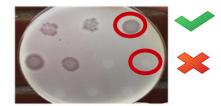
(I) Isolément de phages à partir d'échantillons agricoles



1) Échantillonnage



3) Détection phages


→ Observation de la
lyse de la bactérie

Confluent monolayer of the host bacterium

2) Filtration

Phages