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INRAE:  

INRA, or the “Institut National de la Recherche Agronomique”, is a French agricultural research 

organization founded in 1946. Since January 2020, this institute has merged with the « Institut 

national de la Recherche en Sciences et Technologie pour l’Environnement et l’Agriculture » 

(IRSTEA) to become the INRAE, the “Institut National de Recherche pour l’Agriculture, 

l’Alimentation et l’Environnement”. Today, it is the 1st agricultural research institute in Europe but 

also the 2nd worldwide in number of publications. The INRAE is divided into 14 scientific divisions, 

corresponding to 14 different themes, including Plant Biology and Breeding. It is present on 18 

regional sites, including the Nouvelle-Aquitaine Bordeaux center where I am doing my Master 2 

internship (https://www.inrae.fr/nous-connaitre#chiffres).  

 

L’Unité Mixte de Recherche (UMR) 1332 Biologie du Fruit et Pathologie: this unit is a partnership 

between the "Plant Health and Environment", "Plant Biology and Breeding" divisions of INRAE, and 

the University of Bordeaux (https://www6.bordeaux-aquitaine.inrae.fr/bfp). Among this UMR, there 

is the A3C team in which I work, which focuses on the Adaptation of the Cherry Tree to Climate 

Change (A3C). Their research aims to understand the response to climate change in the cherry tree, 

at different levels: genetics, epigenetics, physiological mechanisms. The long-term objective would 

be to improve the marker-assisted selection scheme in the cherry tree for adaptation to climate change 

and the production of quality fruits. The cherry tree activities are not the only ones within this team, 

which has been carrying out work on the plum tree and the walnut tree for three years 

(https://www6.bordeaux-aquitaine.inrae.fr/bfp/Recherche/Equipe-Adaptation-du-Cerisier-au-

Changement-Climatique).  

 

CTIFL:  

Part of the activities of the internship were carried out at the “Centre Technique Interprofessionnel 

des Fruits et Légumes” (CTIFL's) operational center of Lanxade. The CTIFL is a research and 

development organization for the fruit and vegetable sector, from production to distribution. It was 

created in 1952 and is currently based in Paris. There are also five stations in addition to the head 

office, all located in French fruit and vegetable production areas: Carquefou, Lanxade, Balandran, St 

Rémy and Rungis. The Lanxade center concentrates its work on arboriculture and vegetable crops. 

Thus, the species studied are apple, pear, strawberry, kiwi, carrot, chestnut, hazelnut and walnut 

(http://www.ctifl.fr/Pages/Ctifl.aspx).   

  

https://www.inrae.fr/nous-connaitre#chiffres
https://www6.bordeaux-aquitaine.inrae.fr/bfp
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https://www6.bordeaux-aquitaine.inrae.fr/bfp/Recherche/Equipe-Adaptation-du-Cerisier-au-Changement-Climatique
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 Introduction:  
Walnut is a tree of the family Juglandaceae and the genus Juglans which gathers more than 20 

different species, divided into three botanical categories (Manning 1978). It is a monoecious, 

dichogamous and diploid plant with 2n = 2x = 32 chromosomes (Woodworth 1930). Its dispersion is 

mainly due to the wind (Germain et al. 1999). Among the species, the common walnut or Juglans 

regia, native to the Mountains of Central Asia, is of particular interest to us. Indeed, it is one of the 

most economically important walnut trees in the world and is widely cultivated for its fruit and wood. 

According to the Food and Agriculture Organization of the United Nations (FAO), in 2018 its 

production amounted to more than 3.6 million tonnes worldwide (FAO 2019), with China and the 

United States as the main producers. As the 7th producer in the world, France is facing increasing 

competition on the nuts market. Added to this, the effects of climate change can be observed more 

and more in orchards nowadays; the increase in average temperatures and the late frosts cause a loss 

of production (Bernard et al., 2018). The significant damage caused to crops by plant pathogens and 

pests must also be considered (Luedeling et al. 2011). Because of this, new studies were launched on 

Juglans regia. Thus, the genome of the “Chandler” variety was fully sequenced in 2016 by a team 

from the University of Davis, California, then resequenced in 2018 with 27 other accessions 

(Martínez-García et al. 2016; Stevens et al. 2018). It is from these data that an AxiomTM DNA chip 

of 609,000 SNPs was developed, thus allowing the genotyping of this species (Marrano et al. 2019a). 

Nowadays, breeding programs are focusing on the creation of varieties adapted to these changes, 

while remaining efficient both in productivity and in quality.  

 

It is in this context that the “INNOV’noyer” project, funded by the Nouvelle Aquitaine Region and 

leaded by  the CTIFL of Lanxade in partnership with INRAE-BFP at Bordeaux and University of 

Davis, California. This project aims to study genetic diversity as well as phenotypic variability within 

the collection of genetic resources of INRAE, but also to identify the genetic determinism of traits of 

agronomic interest (http://www.arboriculture-fruitiere.com/articles/technique-fruit/insuffler-un-vent-de-

nouveaute-dans-la-filiere-nucicole-francaise). A first Genome-Wide Association Study (GWAS) has 

already been carried out on phenological traits and lateral bearing on this collection, discovering new 

markers and improving knowledge on the genetic determinism of flowering in walnut (Bernard et al. 

2020). 

 

My internship is part of this project for the characterization of the fruits in the collection for quality 

criteria; weight, size, compressive force required to break the shell and yield. Then, the goal is to 

identify Single Nucleotide Polymorphism (SNP) markers linked to these traits and usable in selection, 

thanks to a GWAS analysis. The work carried out during this internship corresponds to the 

http://www.arboriculture-fruitiere.com/articles/technique-fruit/insuffler-un-vent-de-nouveaute-dans-la-filiere-nucicole-francaise
http://www.arboriculture-fruitiere.com/articles/technique-fruit/insuffler-un-vent-de-nouveaute-dans-la-filiere-nucicole-francaise
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phenotyping of an additional year and the realization of a GWAS. Once SNPs showing an association 

with the studied traits identified, a search for corresponding candidate genes will be carried out, then 

they will be transformed in the future into Kompetitive Allele Specific PCR (KASP) markers, usable 

in Marker-Assisted Selection (MAS).  

  

 Material and Methods  

1.  Plant material 
The plant material used comes from a collection of genetic resources of the genus Juglans belonging 

to the INRAE of Nouvelle-Aquitaine Bordeaux (Fig 1). It is an in vivo and ex situ germplasm 

collection maintained at the Prunus-Juglans Genetic Resources Center, in the Experimental 

Arboricultural Unit of Toulenne. It is the result of significant research work around the world carried 

out by Éric Germain, head of the INRAE walnut breeding program between 1988 and 2000. It 

includes a large part of the species that can be found within the genus Juglans. This collection is made 

up of more than 400 trees of 16 different species, aged 20 to 30 years and grafted on different 

rootstocks. These trees are planted in an orchard with sandy-loamy soil type, with an oceanic climate, 

an average of 850 mm / year of precipitation and low risk of frost. 

Of these 400 individuals, almost 200 accessions belong to the Juglans regia species and come from 

23 different countries; America (United States, Chile, Canada), from all over Europe (France, Spain, 

Portugal, United Kingdom, Bulgaria, Romania, Hungary, Ukraine, Russia, Greece), the Middle East 

(Turkey, Iran, Afghanistan) as well as Central and East Asia (China, India, Japan). 

 

For the work carried out during this internship, a subset of 170 accessions of this collection was used. 

It was created according to an analysis of the genetic diversity using microsatellites and represents 

the greatest diversity within the initial collection (Bernard et al., 2018). The nuts were harvested and 

gathered by accessions in batches. 
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2. Nut processing (not carried out during the internship) 
Fresh nuts were dried just after the harvest according to the principle of drying by ventilation to reach 

a water content of less than 12%; hot, dry air will remove the water from the nuts. For this, a false-

bottom dryer was used. Once dried, the nuts are kept in batches in a cool place at 2 to 4°C. This step 

was performed at CTIFL. 

 

3. Phenotyping  
From each batch of dried nuts, 100 nuts were selected randomly but based on their sanitary state, and 

then weighed. These nuts are then passed through a grader (Fig 2) in order to sort them according to 

their size. We will distinguish seven different sizes depending on the diameter of the nut: less than 

28 mm, 28-30 mm, 30-32 mm, 32-34 mm, 34-36 mm, 36-38 mm and finally more than 38 mm. For 

each size, the number of nuts has been counted and the whole weighed. Then, 50 nuts are randomly 

selected from the initial batch of 100 and the compression force necessary to break these nuts is 

measured in Newton using the texturometer: 25 on the side of the suture and 25 on the face of the 

nut. Finally, the kernels are extracted from the 50 walnuts using a nutcracker and weighed to obtain 

the weight of 50 kernels as well as the breaking yield. The latter is calculated by dividing kernels 

weight by the weight of the 50 inshell walnuts. 

Fig. 1. INRAE Juglans genetic resources collection. 
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During the internship, only the harvest of 2019 was phenotyped, the years 2017 and 2018 having 

already been made. This step was also performed at CTIFL. 

 

A texturometer is a device used to study the physical properties of an object by applying different 

forces to it. In our case, a compressive force is applied to the shell of the dry nut and a force sensor 

will translate the deformation of the support. A specific shell nut protocol previously developed by a 

trainee from CTIFL was used. The device available is a TA-PLUS model, from the Lloyd Materials 

Testing ™ brand (Fig 3).  

4. Analysis of phenotyping data 
At INRAE, all the phenotyping data over the three years were compiled in an Excel table, from which 

calculations were made: 

❖ Weight of 100 nuts, or estimated weight for few batches that contained a bit less than 100 

nuts. Similarly, the weight of the nuts for each size per 100 nuts was estimated. 

❖ The percentage of the total weight for each size, which gives us a representation of the share 

of each size on the batch, for each accession. 

❖ Weight of 50 kernels, or estimated, again as some batches contained a bit less than 50 nuts 

during the compression force assessment step. 

 

Then, the data was visualized on Rstudio thanks to the tidyverse (Wickham 2019), corrplot (Wei et 

al. 2017) and PerformanceAnalytics (Peterson et al. 2020) packages, which make it possible to 

Fig. 2: Grader Fig. 3: Texturometer TA-PLUS Lloyd 

Materials TestingTM 
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produce histograms to observe the distribution of the data as well as correlation matrices, with 

calculation of the p-values of the correlation coefficients.  

For each trait, broad-sense heritability H2 was calculated using the following formula:  

𝐻2 =
𝜎𝐺
2

[𝜎𝐺
2 + (

𝜎𝜀
2

𝑁𝑦
)]

 

With:  

𝜎𝐺
2= variance of the genotypic effect 

𝜎𝜀
2= variance of the residuals 

𝑁𝑦= number of years = 3 (from 2017 to 2019) 

The variances were calculated using the mixed linear model lme4 package of Rstudio (Bates et al. 

2015).  

 

5. Genotyping data (Obtained before the internship) 
Genotyping data was previously obtained using the 609,000 SNP AxiomTM DNA chip, developed in 

2019 by an American team from University of Davis in California (Marrano et al. 2019a). The data 

set of genotyping results is published and available for free access in the previous GWAS analysis on 

flowering (Bernard et al. 2020).  

After receiving genotyping data, it is important to filter it based on the quality of the SNPs. 364,275 

SNPs were kept after data cleaning.  

 

6. Structure of the population (not performed during the internship) 
The power of a GWAS is strongly linked to the structure of the population used. Indeed, the more 

genetically close the individuals within a population are, the less effective is the detection of 

associated SNPs; we increase the possibility of getting false positives. Therefore, the structure must 

be studied and integrated into the GWAS model to limit these risks. Usually, for this the 

STRUCTURE software is used; however, there are other methods more suitable for large datasets as 

in our case. Here, it is the sNMF function of the LEA (Frichot et al., 2015) package on the Rstudio 

software that is used to determine the best number of K genetic groups in our population. Two distinct 

groups have been identified, depending on the origin of the accessions: one group representing 

Western Europe and America, and a second group representing Eastern Europe and Asia.  

 

7. GWAS 
GWAS is a genetic analysis that identifies loci or alleles whose polymorphism is involved in the 

variation of a phenotype. The aim is therefore to study a possible statistical association between 

phenotypic variation and genetic variation within a large population. As part of this analysis, after the 
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phenotyping and genotyping stages, comes the statistical analysis itself which is carried out thanks to 

the use of linear models. A linear model follows the following formula:  

Y = µ + Xβ + Gγ + R 

 

With Y as the phenotype, which is the variable to be explained, µ the mean, Xβ as the covariates, Gγ 

the effects of the tested SNP and R the residuals. The genetic variation corresponds to the explanatory 

variable. 

 

There are different approaches to GWAS with different linear models. Here, it was performed on 

Rstudio using the GAPIT (Lipka et al. 2012) package. 

 

The method used here is called the "two-steps approach" and is meant for large datasets gathering 

two or three years. For this, the work is divided into two steps: first, Best Linear Unbiased Predictions 

(BLUPs) were calculated to integrate the effect of the year and were used as phenotyping data for the 

rest of the analysis. Then, the kinship matrix and Principal Component Analysis (PCA) matrix, which 

account for the structure of the population and the relatedness between individuals, are considered in 

the covariates (Xβ). For this, the "model selection" function of the package will first be used to 

recalculate the population structure using a Mixed Linear Model (MLM) and determine the number 

of groups present. This number of Principal Components (PC) to integrate into the GWAS is selected 

with the Bayesian Information Criterion (BIC): a high score indicates the number of ancestral groups 

most suitable for the analysis. Finally, the analysis itself is carried out by applying two multi-locus 

models to determine the significant associations; MLMM (Segura et al. 2012) and FarmCPU (Liu et 

al. 2016).  

MLMM is a Multi-Locus Mixed-Model, which integrates both a kinship matrix and cofactors. Unlike 

a single-locus model, it will consider several loci at the same time. By integrating cofactors and the 

kinship matrix at the same time, MLMM limits the appearance of "false positives" and allows a 

greater detection power than a model integrating only one of the two (Kaler et al. 2020). 

Fixed And Random Model Circulating Probability Unification (FarmCPU) is a newer model based 

on the MLMM model. It divides MLMM into two sub-models: a random effects model and a fixed 

effects model. FarmCPU was demonstrated as the most able to control the occurrence of false 

positives and false negatives compared to other models (Kaler et al. 2020).  

 

BLUPs, or Best Linear Unbiased Predictions, are generally used in mixed linear models to predict 

random effects. In our case, genotypic effects are considered as random whereas environmental 

factors, the “year” effect here, are considered as fixed. BLUPs will allow data to be adjusted and new 
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data centred on zero. In GWAS, they are used to consider the effect of several factors as covariates 

in the model, such as the year or the place of culture.  

 

As the analysis progresses, the GAPIT package will create several files for each multi-locus model, 

containing the results in the form of a graph called Manhattan Plot, Quantile-Quantile Diagrams (Q-

Q plot) as well as several Excel files with, among others, the names and positions of the different 

associations detected.  

 

At the end of the analysis, it was necessary to adjust the Bonferroni significance threshold of the 

Manhattan plot, automatically established at 1% risk of error by the software, so that it corresponds 

to a threshold of 5% which is less strict and usually used in multi-locus GWAS models.  

 

8. Linkage Disequilibrium (LD) 
We talk about Linkage Disequilibrium when alleles at different loci are associated in a non-random 

pattern and transmitted together to the descendants. Their frequency therefore differs from a 

theoretical allelic frequency. Moreover, it is important to note that an association detected in a LD 

block can hide another position in the same block and actually associated with the characteristic 

studied. Therefore, it is important to be interested in these in association genetics. By looking for all 

the genes included in the LD block of the detected association, it is possible to potentially find 

candidate genes linked to the trait studied. 

 

In this case, LD blocks were analyzed on the Haploview software (Barrett et al. 2005), thanks to its 

“Linkage Format” function. For each trait studied, the analysis start with two files created beforehand 

on the Plink software, containing the data from the SNPs on a window of 100,000 bp on either side 

of the association detected during the GWAS. This window is arbitrarily determined within the limits 

of the operation of the software (200,000 bp maximum in total). Two methods of analysis to detect 

these LD blocks were used; Solid Spine of LD and Confidence Interval (by Gabriel et al.). The first 

is less strict and usually gives larger LD blocks. Haploview will display all the SNPs in the window 

indicated at the start, as well as their LD blocks, in the form of an "LD plot". Each SNP is assigned a 

number, so we simply search for the number of the SNP detected during the GWAS analysis on the 

graph and identify the limits of the LD block to which it belongs. For SNPs in complete linkage 

equilibrium, a window of 50 kb on both sides was investigated. 
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9. Candidates Genes  
The search for candidate genes was done on the Rstudio software, using a script requiring two types 

of files to operate: a first file containing the annotations of the genome of the walnut Juglans regia 

(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Juglans_regia/100/) and a second file with 

the information found during GWAS analysis on associated SNPs (chromosome, name, position, 

bounds of the LD block and associated character). The latter is in two copies in our situation; one for 

each analysis method used when searching for LD blocks. 

 

At first, the script only search for the full-fledged genes included in the limits, which it will compile 

in a first document. Then, it searches among all the annotations and not just the coding sequences, 

producing a second document with many more matches. In the end, 24 documents are obtained: four 

documents per trait, including two for each LD blocks analysis method. For the following analyses, 

only the results obtained with Solid Spine of LD including all the annotations were kept. 

 

For each trait, each associated SNP can correspond to several annotations, identified by a “LOC” 

number. It is then a question of finding the molecule corresponding to the LOC number on an 

annotation file of the reference sequence. In this way, we have several names of molecules, known 

or not, for each association detected in an LD block, the function of which must be sought. 

 

10. Calculation of R2 and allelic effect 
In association genetics, when working on quantitative traits, each association detected for a trait can 

explain a certain percentage of the phenotypic variation observed. This value is called R2 and is 

calculated using the GAPIT package during the GWAS analysis, for each association. However, for 

each significant association found, it is necessary to adjust this value taking into account the R2 value 

of all associations; this is the “genome-wide correction”. For this, the average of R2 of all the other 

markers is subtracted from the value R2 of the significant marker. However, given the significant time 

that this process requires, it is possible to use the average of only 5% of the markers randomly 

selected, the value remaining unchanged. This calculation was done using a script provided by the 

American team from University of Davis in California also working on nuts; thereby we obtain the 

average R2 of 5% of the markers randomly selected, which we can then subtract from the R2 of our 

significant associations. 

The allelic effect is the difference in mean of the trait measured with one allele or the other. It is given 

by the GAPIT package during the GWAS analysis. The sign of the allelic effect is linked to the 

"major" allele of the trait, the allele present in higher proportion in the population. For instance, a 

https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Juglans_regia/100/
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negative value for the allelic effect means that the major allele is linked to a low value for the trait 

studied (a low weight or compression force for example). 

 

 Results  

1. Phenotyping data analysis  
The data collected during phenotyping over the three years were gathered to be compared. The means 

and standard deviations are relatively constant over the years, for all traits studied (Table 1). For 

instance, for the weight of 100 nuts, the mean was of 1,109.64 g in 2017, 1,192.80 g in 2018, and 

1,152.86 g in 2019. However, when observing the ranges, we note that variation is important within 

a year, particularly for the weight of 100 nuts (minimum of 521.74 g and maximum of 2,278.20 g for 

2017 for example), due to the different accessions. After calculating broad-sense heritability, we 

obtain high values ranging from 0.88 to 0.95, both suture and face strength having lower values with 

0.89 and 0.88, respectively.  

 

Then, the relationships between the different traits were evaluated using a Pearson correlation matrix 

between all the traits over the three years of phenotyping (Fig. 4). We can see that there is a significant 

positive correlation between the nut weight and the kernel weight (0.84), between the compression 
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force on the suture and on the face (0.68) as well as between the extreme groups and the kernel and 

nut weight (0.72 and 0.78 respectively). These traits evolve together: when the nut weight increases, 

the kernel weight also increases. Likewise, the compressive force required to break the shell at the 

suture will increase if the compressive force necessary on the face increases.  

Conversely, there is a significant negative correlation between the compression force exerted on the 

suture or on the face and the breaking yield (respectively -0.48 and -0.58): a low compression force 

would be linked to an important breaking yield.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2. GWAS 
The results analyzed from the GWAS are presented in the form of a Manhattan plot and a Q-Q plot 

(Fig. 5). For each character, we have two Manhattan plots, one for each model, that will be compared 

to determine the associations detected. Only six out of seven traits were used for GWAS; “3 upper 

extrem calibres” number and weight being similar and already having a trait related to nut weight, 

the first one was kept for analysis. Here, only two traits are shown for illustration, the other figures 

are available in the Supplemental data.  

For the compression force on the face (Fig 5a), with both models, no signal exceeds the 1% 

Bonferroni threshold, however it is still possible to consider associations that are found in both 

Fig. 4. Correlation matrix using three years data for all the traits 
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models. Two signals stand out: one on chromosome 2 using MLMM with the SNP "AX-170865366" 

(position 32,096,896, p-value = 2.49E-6) and one on chromosome 11 using FarmCPU with the SNP 

"AX-170722428" (position 13,511,848, p -value = 9.10E-6). Interestingly, even with no significance, 

a signal also on chromosome 11 is found close using MLMM, with the SNP "AX-170721865" 

(position 13,163,274, p-value = 4.83E-6).  

For the breaking yield (Fig 5b), with the FarmCPU model we obtained two significant associations: 

one at the end of the chromosome 14 and the second on chromosome 16. On the other hand, with the 

MLMM model there does not seem to be any association exceeding both significance thresholds of 

Bonferroni at 1% and 5%. However, one can find signals on chromosomes 14 and 16 like on the first 

model. 

Q-Q plots are used to assess the relevance of fitting a data distribution to a theoretical model. They 

represent the observed p-values as a function of the expected p-values. When the blue curve follows 

the y = x line (red), the data is correctly adjusted with the model. This is the case for the compression 

force on the face, for both models and the breaking yield with the MLMM model. On the other hand, 

for the breaking yield with the FarmCPU model, the blue curve goes below the red line. 
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Considering both models, a total of 17 associations were kept for all the traits studied, distributed 

over almost all the walnut chromosomes. We obtained five SNPs associated for the nut weight, three 

SNPs associated for the extreme groups and for the kernel weight, and two for the compression force 

on the face as well as on the suture and for the breaking yield (Table 2). For nut weight, extreme 

groups, kernel weight and breaking yield, we focused on significant marker-trait associations that 

were obtained using FarmCPU model. However, for both compression forces, we decided to keep 

marker-trait associations having the higher p-value, knowing that we did not obtain significance.  

For each association, the R2 value was calculated, representing the percentage of phenotypic variation 

explained by this association. The traits studied are quantitative, therefore several genes can control 

them, and the associations detected are responsible for only a small percentage of the phenotypic 

variation measured. For instance, the SNP “AX-171175345” on chromosome 8 would explain 0.59% 

of the variation in nut weight. SNP “AX-170573680” on chromosome 3 would explain 2.10%.  

However, two associations stand out particularly because of their R2 value greater than 20%, on 

chromosomes 14 and 16, respectively for the extreme groups (21.70) and the breaking yield (27.23). 

Fig 5. GWAS results for a. Face strength and b. Breaking yield traits, using FarmCPU and MLMM models 
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3. LD blocks and candidate genes  
Once the GWAS analysis has been carried out and the SNPs associated with the studied traits found, 

we are interested in the LD blocks to which they belong using the Haploview software. This will 

subsequently enable us to find candidate genes potentially linked to these traits. These LD blocks 

were obtained using two analysis methods: Confidence Interval and Solid Spine of LD. However, the 

first approach being too strict and not giving results for all SNPs, the second one was used to be sure 

that a maximum of SNPs belong to an LD block for further research. Among all the positions detected, 

only the SNP "AX-170746651" located on chromosome 16, linked to the breaking yield, is in total 

linkage equilibrium and does not belong to any LD block and no gene was found in a window of 50 

kb. 

 

A total of 29 candidate genes were found associated with the markers detected (Table 3), four of 

which stand out particularly because of their location exactly at the position of the SNP marker. The 
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SNP "AX-170865366" on chromosome 2 linked to the compression force on the face is in the coding 

sequence for the TPX2-like protein. 

Similarly, the SNP "AX-171547969" on chromosome 7, linked to the kernel weight, is included in 

the coding sequence of the gene for the BEL1-like homeodomain 4 protein.  

There is also the SNP “AX-171170293” present on chromosome 14 and linked to the extreme groups, 

located in the coding sequence for the beta-galactosidase enzyme.   

Finally, we found other molecules of interest linked to the traits studied, such as the lamin-like protein 

on chromosome 5 linked to the compression force on the suture.  
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 Discussion and perspectives  

1. Plant material  
The plant material used during this internship comes from the INRAE collection of genetic resources 

of the genus Juglans. From this collection, which includes more than 400 individuals, a subset of 170 

J. regia accessions was selected, representing the greatest diversity of the collection, to perform the 

GWAS analysis. However, of these 170 individuals, only 150 were used for the analysis because 20 

trees with missing data due to lack of fruit production were discarded. The size and structure of the 

population used for a GWAS have an influence on the reliability of the results obtained: it is generally 

preferable to work with a large population to obtain statistically robust results. When working on 

plants, usually a panel of several hundred individuals is used (Korte and Farlow, 2013). Therefore, a 

population of 150 accessions may seem too small to obtain correct results. However, several studies 

have succeeded in detecting associations with a panel of less than 200 accessions, notably in apples 

(McClure et al. 2018) and peaches (Elsadr et al. 2019). Another GWAS analysis was also carried out 

on this same panel of 170 accessions, studying different traits, and gave several interesting results 

(Bernard et al. 2020).  

 

2. Phenotyping data 
The comparison of our phenotyping data over the three years shows consistency across the means 

and standard deviations for the seven traits studied. This is in agreement with the high heritability of 

the traits, an important characteristic for carrying out a GWAS analysis on a population. It means that 

the effect of the genome is more important than the effect of the environment. 

After calculating this broad-sense heritability (H2), large values were obtained with a lower H2 for 

the compression forces on the suture and the face, suggesting less inheritable traits. It can also be 

observed in Table 2 that only two associations were detected for these two traits, compared to a 

maximum of five associations for the nut weight which also has a higher H2 value. The results 

obtained in GWAS partly depend on the inheritance of a character. The more this character is 

inheritable, the easier it would be to analyze in GWAS.  

 

The relationships between the seven measured traits were also analyzed using the correlation 

matrices. Thus, we were able to highlight a strong positive correlation between nuts weight, their size, 

and the kernel weight. Likewise, we have seen a correlation between the two compressive forces. A 

positive correlation between two traits could suggest that they are genetically linked. However, after 

our GWAS analysis, no position was detected in common between these traits. 
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3. Linear models  
In a GWAS analysis, the choice of linear models to use for the study is an important parameter. There 

are many, ranging from the simple linear model to the most recent multi-locus mixed model, each 

with its advantages and disadvantages. For this study, two mixed multi-locus linear models were 

used: MLMM and FarmCPU. As described above, MLMM is a mixed model which will integrate the 

kinship matrix as well as several cofactors. It replaces simple linear models by reducing the 

probability of false positives (detecting an association that is not one) by considering the structure of 

the population. Its association detection power is more important than a simple model. 

Meanwhile, FarmCPU is a multi-locus mixed model developed in 2015 and based on MLMM which 

it divides into two parts: one with fixed effect and another with random effect. 

The comparison between these two models shows that FarmCPU seems more precise in detecting 

associations with a trait. It would also better control the appearance of false positives and negatives 

during the analysis (Kaler et al. 2020). 

Applied to our data, by comparing the Q-Q plots (Fig 5) we notice that with the MLMM model the 

adjustment of the data follows more the line y = x than with FarmCPU on most characters. The 

MLMM model could seem the most suitable. With FarmCPU, the curve goes below this line y = x in 

certain cases, which means that the distribution is too adjusted compared to reality; too much 

information has been considered. However, this does not invalidate the results. 

Most of the significant associations were detected with the FarmCPU model on the six traits studied, 

which suggests that the MLMM model may be too strict, or not so powerful. Fortunately, by 

comparing the Manhattan plots, both models give similar results. For instance, the significant signals 

on chromosomes 1 and 4 for kernel weight found using FarmCPU are also found remarkably close, 

but not significant, using MLMM. The same results can be observed for the association at the end of 

chromosome 16 for breaking yield. These findings tend to give weight to FarmCPU results that we 

focused on, even if the QQ-plots are not perfect.  

 

4. Detected associations  
GWAS analysis found 17 SNPs associated with the traits studied. Among them, three were found on 

chromosome 1, at positions 15,926,539 bp, 19,207,870 bp and 39,963,556 bp, respectively associated 

with nuts weight, extrem groups and kernel weight. Other major Quantitative Trait Locus (QTLs) 

have also been detected on this chromosome in previous studies, notably in the regions located at the 

start of the chromosome, around 6,000,000 bp and 9,000,000 bp, linked to walnut phenology 

(Marrano et al. 2019b; Bernard et al. 2020). We also detected two associations on chromosome 11, 

linked to the two compression forces, at 12,909,083 bp and 13,511,848 bp. It was in this region that 

another team found two other SNPs associated with the compressive force on the suture (Sideli et al. 
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2020). Another more distant region is associated with bearing habit, with a major SNP detected at 

position 20,831,267 bp responsible for 34.3% of the phenotypic variations observed (Bernard et al. 

2020). 

 

The R2 values calculated for each association vary between 0.59% for the lowest (SNP "AX-

171175345" in position 26,618,252 bp associated with nut weight) and 27.23% for the highest (SNP 

"AX-170746651" in position 17,458,649 bp associated with the breaking yield). Thus, we have two 

major SNPs on chromosomes 14 and 16, responsible for a large part of the phenotypic variation 

observed (respectively 21.70% and 27.23%) for nut size and breaking yield. There is also an 

association on chromosome 12 responsible for an important part of the variation observed in nut 

weight (17.13%) compared to the other SNPs detected. 

 

5. Candidate genes function  
Twenty-nine candidate genes were found associated with the markers detected during the GWAS 

analysis. Among them, four include the associated marker in their coding sequence: the TPX2-like 

protein, the BEL1-like homeodomain 4 protein, the β-galactosidase enzyme, and a protein unknown 

to date.  

SNP "AX-170865366" is included in the coding sequence of the TPX2-like protein on chromosome 

2 and linked to the compression force on the face. It is a Microtubule-Associated Protein (MAP) 

involved in the formation of the mitotic spindle (Boruc et al. 2019) and the regulation and 

organization of microtubules (Lei et al. 2019). It is therefore necessary for cell division but also for 

cell integrity, which makes it an ideal candidate for this trait. Related to the same trait, a GPI-anchor 

transamidase has been detected on chromosome 11. It is a protein involved in many metabolic and 

developmental processes such as plant growth and embryogenesis (Bundy et al. 2016). 

 

Related to the kernel weight, we also found the BEL1-like homeodomain 4 protein which is part of 

the Three Amino-acid Loop Extension (TALE) class proteins. It interacts with Knotted-like 

homeobox proteins (KNOX) to form a heterodimer and regulate the transcription of genes involved 

in the development of the shoot apical meristem (Bhatt et al. 2004) and the ovum (Reiser et al. 1995).  

 

Nut size and weight are two other complex traits involving several proteins and different metabolic 

pathways. In our case, we find the β-galactosidase enzyme linked to the size of the nut, which is 

responsible for the structure of cell walls in many fruits, such as peach and lemon, as well as their 

biogenesis (Wu and Burns 2004; Guo et al. 2018). Indeed, this enzyme can hydrolyse non-reducing 

terminal residues of β-D-galactosyl from polymers of β-D-galactoside (Wu and Burns, 2004 ; Guo et 
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al., 2018). Nut weight is the trait with the most associations with markers, as well as a significant 

number of molecules, most of which are involved in the growth of the plant and its defences, such as 

purple acid phosphatase, zinc-binding. protein or phosphoglycerate kinase (Nishimura et al. 2013; 

Antonyuk et al. 2014; Rosa-Téllez et al. 2018).  

 

Finally, we found three genes linked to the compressive force necessary on the suture to break the 

shell, one of which corresponds to the gene coding for a lamin-like protein. The team at University 

of Davis in California performed a similar GWAS analysis on the compressive force on the suture, 

using different techniques: manual force and texturometer (Sideli et al. 2020). Their results also 

highlight, with the FarmCPU model, an SNP "AX-170748528" on chromosome 5, at 13,023,760 bp, 

linked to a lamin-like protein. This protein appears to be involved in the formation of the nuclear 

lamina.  

 

 Conclusion  
The creation of new varieties of nuts adapted to climate change and of quality requires better 

knowledge of the genetic origin of these criteria and the identification of new markers linked to them. 

The GWAS analysis carried out here made it possible to better understand this genetic determinism 

linked to the quality of the nut such as its weight, its size, and the strength of the shell, on a collection 

of INRAE walnut trees. This work provided tools for the implementation of a future selection, thanks 

to the phenotyping carried out on these accessions which bring new information on the characteristics 

of interest. New markers have also been detected as well as candidate genes for certain traits. Among 

these new candidate genes, we were able to find the coding sequence of a protein in common with 

the team at University of Davis in California, in connection with the compression force applied to the 

suture of the shell, a very promising result. Therefore, we have identified new SNPs associated with 

these quality traits and their position in the genome. This information will then be able to give rise to 

the development of markers usable in MAS, such as KASP markers. After their development, these 

markers must be tested on other trees phenotyped for the same traits, to be validated for use in MAS. 
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Fig S1. GWAS results for a. Extrem groups, b. Kernel weight, c. Nut weight and d. Suture strength traits, using 

FarmCPU and MLMM models 
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Fig S2. Distribution of phenotyping data over the three years for a. Nut weight, Extrem groups, kernel weight, 

Breaking yield and b. Face and Suture strength 
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Abstract 

The “INNOV’noyer” program was set up by the CTIFL of Lanxade in partnership with INRAE 

Nouvelle-Aquitaine-Bordeaux and University of Davis, California. This project aims to study genetic 

diversity as well as phenotypic variability within the collection of genetic resources of INRAE, but 

also to identify the genetic determinism of traits of agronomic interest. My internship is part of this 

project for the characterization of the fruits in the collection for quality criteria and to identify SNP 

markers linked to them. The phenotyping of a third harvest year was carried out to complete the two 

previous years. The comparison of these data shows consistency over the three years, with heritability 

of traits and strong positive correlations between nuts weight, their size, and kernel weight. A positive 

correlation was also detected between the strength of the shell at the suture and at the face. A GWAS 

was carried out and we found 17 associations on the six traits studied, responsible for different 

percentages of the phenotypic variation observed. We found 29 candidate genes associated with the 

markers detected, with four including the SNP in their coding sequence.  

Key words: Walnut, GWAS, Association Genetics, Nut quality, Molecular markers 

 

 

Résumé 

Le projet « INNOV’noyer » a été mis en place par le CTIFL de Lanxade en partenariat avec l'INRAE 

Nouvelle-Aquitaine-Bordeaux et l'Université de Davis en Californie. Ce projet vise à étudier la 

diversité génétique ainsi que la variabilité phénotypique au sein de la collection de ressources 

génétiques de l'INRAE, mais aussi à identifier le déterminisme génétique des caractères d'intérêt 

agronomique. Mon stage s'inscrit dans ce projet par la caractérisation des fruits de la collection pour 

des critères de qualité et l’identification de marqueurs SNP qui leur sont liés. Le phénotypage d’une 

troisième année de récolte a pu être réalisé pour compléter les deux années précédentes. La 

comparaison de ces données montre une cohérence sur les trois années, avec une héritabilité des traits 

et de fortes corrélations positives entre le poids des noix, leur taille et le poids du cerneau. Une 

corrélation positive a également été détectée entre la force nécessaire pour rompre la coque au niveau 

de la suture et au niveau de la face. La réalisation d’une GWAS a permis de trouver 17 associations 

sur les six traits étudiés, responsables à différents degrés de la variation phénotypique observée. Nous 

avons trouvé 29 gènes candidats associés aux marqueurs détectés, dont quatre intégrant le SNP dans 

leur séquence codante.  

Mots-clefs : Noyer, GWAS, Génétique d’association, Qualité de la noix, Marqueurs moléculaires 

 


